Continual Learning with Language Agents

Bodhisattwa Majumder

Allen Institute for Al

by dalle-3

When *not* watching seaplanes out of my office window

I dabble with

Interactive Systems Language Agents Dialog Models Multi-Agent Systems Scientific Discovery Social Science

Outline

Background

CLIN: Continual Learning from Interactions Proposed Architecture What does CLIN learn over time? Results on ScienceWorld & ALFWorld

SSO: Skill Set Optimization

Skills

Skill Set Optimization

Results on ScienceWorld & NetHack

Sequential Decision-making (SDM)

Real world decision-making tasks are sequential in nature

Text-worlds are great simulations of real-world phenomena for testing systems ability to **long-term planning**, **sequential reasoning**, and **decision making**

TextWorlds: E.g., ScienceWorld

Task Description: Your task is to <u>boil water</u>.

> look around

This room is called the **hallway**. In it, you see: a picture, a substance called air, A door to the art studio (that is open) A **door to the kitchen** (that is open)...

> go to kitchen
You move to the kitchen.

> look around

This room is called the kitchen. In it, you see: **a cupboard, a sink**, a fridge,

. . .

. . .

> pick up thermometer

You move the thermometer to the inventory.

> open cupboard
The cupboard is now open.

> pick up metal pot You move the metal pot to the inventory.

> look around
This room is called the
kitchen. ...

> move metal pot to sink

You move the metal pot to the sink.

> activate sink
The sink is now activated.

> focus on substance in metal pot

You focus on the water.

> pick up metal pot

You move the metal pot to the inventory.

> move metal pot to stove

You move the metal pot to the stove.

> activate stove

The stove is now activated.

- > examine substance in metal pot
- a substance called water
- > use thermometer in inventory

on substance in metal pot the thermometer measures a

temperature of 13 degrees celsius

> use thermometer in inventory on substance in metal pot

the thermometer measures a temperature of 102 degrees celsius (Task Completed)

ScienceWorld as POMDP

Each task in ScienceWorld is a Partially-observable Markov decision processes (POMDP).

- 1. Only partial-observations are available
- 2. An agent **needs to update its belief** through interactions
- 3. The optimal behavior may often include information gathering actions to improve agent's beliefs about the world such as "look around"

end: The thermometer measures a temperature of 102 degrees celsius

Existing Approaches for SDM

Model classes	Learning	Interpretability	Generalization
RL (DRRN, CALM, KG-A2C)	Policies from environment feedback	Low	Low
Supervised (TDT)	Behavior cloning from gold trials	Low	Low
Generative (GPT-4)	Pre-training + Instruction tuning	Low	Moderate
Hybrid (SwiftSage)	Mix of Supervised + Generative	Low	Moderate
Meta RL (AdA)	Online RL on previous trials	Low	High
Reflexion	Mistakes from previous trials	High	Moderate
What we want	More than mistakes	High	High

Research Questions

Can SDM environments and tasks be continually learnt

from interacting and observing world changes?

Can we build an agent that can **quickly adapt and generalize** to a new task or environment at the test time?

$(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},$

× × × ×

X X X X X X X

× × × × × ×

× × × ×

× × × ×

CLIN: Continually Learning From INteractions

Bodhi, Bhavana, Peter Jansen, Oyvind, Niket, Harry, Chris, Pete

Outline

1 1 1 1 1 1

Background

CLIN: Continual Learning from Interactions Proposed Architecture

What does CLIN learn over time? Results on ScienceWorld & ALFWorld

SSO: Skill Set Optimization

- Skills
- Skill Set Optimization
- Results on ScienceWorld & NetHack

CLIN: Continually Learning from INteractions

** **Controller + Executor:** Zero-shot GPT-4 (unlike Reflexion/ReAct, we do not use any task-specific few-shot examples)

CLIN: Continually Learning from INteractions

filled with water,

CLIN: Continually Learning from INteractions

Outline

Background

CLIN: Continual Learning from Interactions

Proposed Architecture What does CLIN learn over time?

Results on ScienceWorld & ALFWorld

SSO: Skill Set Optimization

Skills

Skill Set Optimization

Results on ScienceWorld & NetHack

Memory

Learning state transitions is essential for SDM

- 1. actions enabling **desired** state transitions
- 2. actions producing **undesired** or no changes
- 3. state transitions contributing to the task

A collection of natural language statements capturing **causal abstractions of action-effects** *favorable to exploit at test-time like hindsight experience replay*

Good effects: $X \rightarrow$ is necessary to $\rightarrow Y$ Bad effects: $X \rightarrow$ does not contribute $\rightarrow Y$

Uncertainty Low: may be; **High:** should be

Meta-Memory

Task- and environment-specific memory cannot help generalize such as knowing how to <u>boil</u> <u>water</u> may not help knowing how to <u>boil</u> <u>cadmium</u> unless *generalized abstractions*.

Select the best memories from past attempts across diverse environments/tasks *auto-curriculum selection*

Meta-memory with generalized instruction:

"Generate insights to solve the same task in a new environment configuration"

CLIN: Summary

the second second second second second

CREATION (Env1, Trial1) Task: Grow an orange Goal: Find seeds Action: Go to the bedroom Observation: ...(no seeds)... Action: Go to the garden Observation: ...(no seeds)... Action: Go to the kitchen Observation: You see seeds Action: Pick up seeds Goal: Plant the seeds ...

MEMORY:

Going to the kitchen **may be necessary** to find seeds

Outline

1 1 1 1 1

Background

CLIN: Continual Learning from Interactions

Proposed Architecture What does CLIN learn over time? Results on ScienceWorld & ALFWorld

SSO: Skill Set Optimization

Skills

Skill Set Optimization

Results on ScienceWorld & NetHack

CLIN Exhibits Rapid Task Adaptation

and the second second

Quick adaptation, improved efficiency

CLIN beats reflective SOTA

CLIN Generalizes to Novel Environments

Train:		RL Methods			Generative Language Agents			CLIN (ours)			
Boil water	Task	Туре	DRRN	KGA2C	CALM	SayCan	ReAct	Reflexion	BASE	GEN-ENV	G+A
	Temp ₁	S	6.6	6.0	1.0	26.4	7.2	5.9	25.2	15.7	13.8
Boil chocolate	Temp ₂	S	5.5	11.0	1.0	8.0	6.1	28.6	53.2	49.7	58.2
	Pick&Place ₁		15.0	18.0	10.0	22.9	26.7	64.9	92.5	59.2	100.0
Tost	Pick&Place ₂		21.7	16.0	10.0	20.9	53.3	16.4	55.0	100.0	100.0
Test:	Chemistry ₁	S	15.8	17.0	3.0	47.8	51.0	70.4	44.5	42.2	51.7
Boil Cadmium	Chemistry ₂	S	26.7	19.0	6.0	39.3	58.9	70.7	56.7	85.6	93.3
	Lifespan ₁	S	50.0	43.0	6.0	80.0	60.0	100.0	85.0	65.0	100.0
	Lifespan ₂	S	50.0	32.0	10.0	67.5	67.5	84.4	70.0	75.0	90.0
	Biology ₁	S	8.0	10.0	0.0	16.0	8.0	8.0	10.0	32.0	32.0
CLIN even beats	Boil	L	3.5	0.0	0.0	33.1	3.5	4.2	7.0	4.4	16.3
imitation lookning	Freeze	L	0.0	4.0	0.0	3.9	7.8	7.8	10.0	8.9	10.0
imitation learning	GrowPlant	L	8.0	6.0	2.0	9.9	9.1	7.3	10.2	10.9	11.2
baselines (that uses	GrowFruit	L	14.3	11.0	4.0	13.9	18.6	13.0	35.9	70.8	94.5
•	Biology ₂	L	21.0	5.0	4.0	20.9	27.7	2.6	70.0	42.8	85.6
gold trajectories) in	Force	L	10.0	4.0	0.0	21.9	40.5	50.6	53.5	70.0	100.0
most lengthy,	Friction	L	10.0	4.0	3.0	32.3	44.0	100.0	56.5	70.0	94.0
	Genetics ₁	L	16.8	11.0	2.0	67.5	25.7	50.9	77.4	84.5	100.0
complex tasks	Genetics ₂	L	17.0	11.0	2.0	59.5	16.8	23.7	62.3	61.4	100.0
		S	22.1	19.1	5.2	36.5	37.6	49.9	54.7	58.3	71.0
		L	11.2	6.2	1.9	29.2	21.5	28.9	42.5	47.1	68.0
		All	16.7	12.7	3.6	32.9	29.6	39.4	48.6	52.7	69.5

Efficient Generalization

Performance drops 6.2 point and in 10% episodes if we do not use **causal format** for memory insights

Controller adds 18 points to a base (ReAct) performance improving 44% episodes

CLIN Generalizes to Novel Tasks

 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .</t

Train (in Env 1): Boil water Boil apple juice

Test (in Env 1): Freeze Water

The improvement attributes to *critical learning about the environment* (apple juice is in the fridge)

.

Natural selection of good memory items over time shows CLIN can auto-correct when the starting memory is not applicable due to loss of specificity or lack of information.

CLIN converges to a more precise representation of the world

	GEN-ENV (Trial 0)	GEN-ADAPT (Best Trial)		GEN-TASK (Trial 0)	GEN-ADAPT (Best Trial)
No. of insights	100	105	No. of insights	98	107
Correct insights	72.0%	91.4%	Correct insights	73.9%	91.1%
Final score	39.1	55.9	Final score	43.7	58.1

Is Causal Abstraction Helpful?

Memory with no structure is generic ("Be clear with your actions"), often contains ungrounded information ("use a food processor"), and does not naturally abstract causal relations towards a world model ("this is unnecessary and wastes time")

Ablation Setup	$\begin{vmatrix} \Delta avg \\ score (\downarrow) \end{vmatrix}$	%ер. drop. (†)
Abl-Causal-Memory	-6.2	10
Abl-Controller-BASE	-18.1	44.8

.

Ablations for CLIN

ALFWorld

You are in the middle of a room. Looking quickly around you, you see a drawer 2, a shelf 5, a drawer 1, a shelf 4, a sidetable 1, a drawer 5, a shelf 6, a shelf 1, a shelf 9, a cabinet 2, a sofa 1, a cabinet 1, a shelf 3, a cabinet 3, a drawer 3, a shelf 11, a shelf 2, a shelf 10, a dresser 1, a shelf 12, a garbagecan 1, a armchair 1, a cabinet 4, a shelf 7, a shelf 8, a safe 1, and a drawer 4.

Your task is to: put some vase in safe.

> go to shelf 6

You arrive at loc 4. On the shelf 6, you see a vase 2.

Failures

CLIN is able to **compose insights**

No stove, use furnace (Env 1) + Go to Kitchen for apple juice (Env 2)

But when it **fails**, it is due to:

1. Lack of exploration

If it has never visited an art studio, it will never "explore" to reach art studio for collecting paints

2. Poor memory retrieval

It knows to use stove for heating OR use furnace when stove is broken BUT to boil cadmium it needs to use furnace even if the stove is working

and the second second

		Transf	erable	Scalable			
		Multi-task	Modular	Lossless	Sublinear		
	Fewshot	X	X		X		
Agent Toronated Statebolis St. Statebolis St. Sector State Sector Statebolis St. Sector State Sector State Sector Statebolis St. Sector State Sector State Sector State Sector State Sector State Sector State Sector State Sector State StateState StateState Sector State Sector St	Reflexion	X	X	X	X		
	ExpeL	~	X				
5	Voyager	X			X		
	CLIN			X			

- 1. Shinn, Noah, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. "Reflexion: Language agents with verbal reinforcement learning." arXiv preprint arXiv:2303.11366 (2023).
- 2. Zhao, Andrew, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. "ExpeL: LLM Agents Are Experiential Learners." arXiv preprint arXiv:2308.10144 (2023).
- 3. Wang, Guanzhi, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandkumar. "Voyager: An open-ended embodied agent with large language models." arXiv preprint arXiv:2305.16291 (2023).
- 4. Majumder, Bodhisattwa Prasad, Bhavana Dalvi Mishra, Peter Jansen, Oyvind Tafjord, Niket Tandon, Li Zhang, Chris Callison-Burch, and Peter Clark. "CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization." arXiv preprint arXiv:2310.10134 (2023).

S. S. S. S. S. S. S.

× × × × · · · ·

SSO: Skill Set Optimization

N N

x x x x x x x x x x x x x x

<

.

Kolby, Bodhi, Bhavana,

Sameer, Pete, Roy

Outline

1 1 1 1 1 1

Background

CLIN: Continual Learning from Interactions Proposed Architecture What does CLIN learn over time? Results on ScienceWorld & ALFWorld

SSO: Skill Set Optimization

Skills

Skill Set Optimization

Results on ScienceWorld & NetHack

Skills

- World model information should:
 - Be general, composable, editable, and retrievable
 - Contribute to LLM agent's knowledge of the world model (state & action transitions)

Skill Definition

Target:

• goal state feature

Prerequisites:

- initial state features
- used for retrieval

Instructions:

• generic actions to execute

Example generated Skill

Target: agent is in the 'target location'

Prereqs:

- 1. agent is in a location that has a door leading to a hallway
- 2. there exists a known target location to which agent needs to move
- 3. agent is able to move (not restricted or blocked)

Instructions:

- 1. go to hallway
- 2. go to 'target location'

Using Skills

Outline

Background

CLIN: Continual Learning from Interactions Proposed Architecture What does CLIN learn over time? Results on ScienceWorld & ALFWorld

SSO: Skill Set Optimization

Skills

Skill Set Optimization

Results on ScienceWorld & NetHack

- 1. Find common sub trajectories
 - a. Trim trajectories to end in positive rewards
 - b. Align sub trajectories using state, action embedding from LLM

- 1. Find common sub trajectories
- 2. Score and sort skills
 - a. Similarity
 - b. Reward
 - c. Length

- 1. Find common sub trajectories
- 2. Score and sort skills
- 3. Construct skill set using beam search
 - a. Do not allow skill sub trajectories to overlap
 - b. Select best beam based on sum of scores: similarity, reward, length

- 1. Find common sub trajectories
- 2. Score and sort skills
- 3. Construct skill set using beam search
- 4. Generate skill target, prerequisites, and instructions

 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .</t

and the second second

- Prioritize sampled skills that lead to positive reward
- Black list sampled skills that lead to negative reward
- After every trajectory, extract skills from last N trajectories

Outline

1 1 1 1 1

Background

CLIN: Continual Learning from Interactions Proposed Architecture What does CLIN learn over time? Results on ScienceWorld & ALFWorld

SSO: Skill Set Optimization

Skills Skill Set Optimization Results on ScienceWorld & NetHack

SSO improves over CLIN

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s<

ScienceWorld			aptation	~~~	Tran			
Task	ReAct	Reflexion	CLIN	SSO	CLIN	SSO	-	Melting Temp
Temperature	7.2	5.9	14.3	100	15.7	71.6		
Melting Temp	6.1	28.6	51.8	97.3	49.7	69.2	70	
Find Plant	26.7	64.9	100	100	59.2	100	, 0	
Find Living	53.3	16.4	100	96.7	100	90	60	·
Chemistry	51	70.4	44.4	82.6	42.2	48		
Color Mixing	58.9	70.7	56.7	81.1	85.6	71.1	50	
Lifespan, Longest	61	100	100	100	65	90	erore 95	
Lifespan, Shortest	67.5	84.4	90	100	75	80	<u></u> 8 40	
Life Stages, Plant	8	8	8	6.2	32	3.4	30	
Life Stages, Animal	27.7	2.6	81	100	42.8	77	50	
Boil	3.5	4.2	15.2	81.7	4.4	48.7	20	
Freeze	7.8	7.8	10	74.3	8.9	38.9		
Grow Plant	9.1	7.3	11	86.6	10.9	61.2	10	
Grow Fruit	18.6	13	71.6	78	70.8	28.3		
Gravity	40.5	50.6	100	100	70	74	0	
Friction	44	100	72.5	94	70	67.5		Act 550 time ward writy
Genetics, Known	25.7	50.9	100	78.5	84.5	42.5	1	Rei D Rei Rew cimilar
Genetics, Unknown	16.8	23.7	92.6	48.7	61.4	20.3		React 550 Refine Reward wild Reward wild Reward
Average	29.6	39.4	62.2	83.7	52.7	60.1	- -	A12

An example skill

ScienceWorld Melting Temp Task

Subgoal: The stove is turned on. on the stove is: a substance called liquid [substance].

- 1. Focus on the thermometer
- 2. Focus on the substance you want to heat
- 3. Move the focused substance to the stove
- 4. Activate the stove

Skill Lifecycle

Executed Iteration

NetHack

Conclusion

CLIN: <u>https://allenai.github.io/clin/</u>

CLIN: A CONTINUALLY LEARNING LANGUAGE AGENT FOR RAPID TASK ADAPTATION AND GENERALIZATION

Bodhisattwa Prasad Majumder¹, Bhavana Dalvi Mishra¹, Peter Jansen^{1, 2}, Oyvind Tafjord¹, Niket Tandon¹, Li Zhang³, Chris-Callison Burch³, Peter Clark¹ ¹Allen Institute of AI ²University of Arizona ³University of Pennsylvania

SSO: https://allenai.github.io/sso/

Skill Set Optimization: Reinforcing Language Model Behavior via Transferable Skills

Kolby Nottingham¹ Bodhisattwa Prasad Majumder^{*2} Bhavana Dalvi^{*2} Sameer Singh¹ Peter Clark² Roy Fox¹

.

- Dynamic memory in the form causal abstractions or skills helps in generalization
- But current execution is greedy best, can we improve?
- Memory helps exploiting world knowledge, but how to incentivize exploration?

Thank you!

