
ReZero is All You Need:
Fast Convergence at Large Depth

Thomas Bachlechner1*, Bodhisattwa Prasad Majumder2*, Huanru Henry Mao3*, 
Garrison W. Cottrell2, Julian McAuley2

1MeetElise, USA
2UC San Diego, USA

3Altum Inc., USA



Deeper Networks

Deep networks have expressive power 
that scales exponentially with depth:

This figure shows networks with 
random weights of different 
distributions propagating a circle 
through the network.

This flexibility makes them harder to 
train.



Why are deep networks harder to train?
Consider a deep network as a series of width-preserving function:

Assuming depth L, if the magnitude of a perturbation is changed by a factor r in each layer, both signals 
and gradients vanish or explode at a rate of rL.



An Analogy



An Analogy



Signal propagation in randomly initialized networks

Recently, analysis (using Mean Field Theory) of how signals propagate in deep 
networks has found interesting properties:

Consider two input examples a and b. The cosine distance of a and b approaches a 
fixed point as it moves through the deep network.

Depending on the Jacobian of the network, the cosine of two input vectors (a and 
b) will converge to 0 (orthogonal) or 1 (aligned).



Signal propagation in randomly initialized networks

Depending on the Jacobian of the network, the cosine of two input vectors (a and 
b) will converge to 0 (orthogonal) or 1 (aligned).

a

b

Cosine 
Distance

Deep Network



Signal propagation in randomly initialized networks

If this fixed point is 1 (aligned): Network is stable and every input maps to the same 
output, so the gradient vanishes - even very different inputs will be aligned.

a

b

Cosine 
Distance

Deep Network ab



Signal propagation in randomly initialized networks

If this fixed point is 0 (orthogonal): Network is chaotic and similar inputs map to 
very different outputs, leading to exploding gradients.

a

b

Cosine 
Distance

Deep Network

a

b



Ideally, we want to initialize our 

network to be at the edge of chaos.



Dynamical Isometry

To find out if a network is stable or chaotic, we can compute:

Here, x
L
 is the output of the network, x

0
 is the input. 

The mean squared singular values (χ) of J determines the growth or decay of the 
average signal as it moves through the deep network. When χ is approximately 1, the 
average signal strength is neither enhanced or attenuated.

Dynamical Isometry (strong condition): All singular values of J must be close to 1.



Problem with Initialization

● Not all architectures can satisfy this
○ RELUs

○ Self-attention

● In practice, you could use costly normalization instead to “fix” the issue
○ BatchNorm has shown to not work well with sequential data

○ LayerNorm can work, but there are problems

○ They incur computational cost

● What if there is a simpler way?



ReZero

ReZero: residual with zero initialization

Initialize this learned scalar to zero

● Initializes to identity map, trivially 
satisfies dynamical isometry

● Train as deep as you want
● Train much faster



Why would ReZero train faster?

Consider a toy residual network that has a single neuron, single weight and L layers deep:



Why would ReZero train faster?

Consider a toy residual network that has a single neuron, single weight and L layers deep:

When alpha = 1: The network would be very sensitive the small perturbations of the input. You 
need a learning rate that is exponentially small in depth.



Why would ReZero train faster?

Consider a toy residual network that has a single neuron, single weight and L layers deep:

When alpha = 1: The network would be very sensitive the small perturbations of the input. You 
need a learning rate that is exponentially small in depth.

When alpha = 0: The input signal is preserved.



Why would ReZero train faster?

Solution at ɑw = 1.2

ReZero avoids 
poorly conditioned 
regions around α ≈ 1

Contour log plots of gradient norm



ReZero for Deep Networks 



Signal Propagation in ReZero

Histogram of log singular values of input-output Jacobian



Signal Propagation in ReZero



Signal Propagation in ReZero

For deeper networks, or at 
initialization, log of singular 

values are far from 0.

This leads to vanishing or 
exploding gradients.



Signal Propagation in ReZero

For ReZero, for both deeper 
networks and at initialization, log 
of singular values are close to 0.

Allows faster signal propagation 
at large depth.



Faster Convergence for Fully-connected Networks 

Four variants of
32 layer fully-connected 
networks with width
256 and ReLU 
activations on CIFAR-10



Faster Convergence for ResNets

Validation error for 
four variants of 
ResNet-110 on 
CIFAR-10



Faster Convergence for Transformers

Three variants of 12 
layer Transformers 
normalization variants 
against ReZero on 
enwiki8



Analysis on Alphas

Alphas become big near the deepest layer early in training, 
then drop back to small values



Conclusion

● A really simple way to get much faster convergence in deep networks.
● You can train arbitrary deep networks as you desire.
● Flexible to many architectures, no need for complex initialization schemes.

Future work:

○ Explore the meaning behind residual weights.

○ Progressively grow your ReZero network.

pip install rezero


