

ReZero is All You Need: Fast Convergence at Large Depth

Thomas Bachlechner¹*, Bodhisattwa Prasad Majumder²*, Huanru Henry Mao³*, Garrison W. Cottrell², Julian McAuley²

> ¹MeetElise, USA ²UC San Diego, USA ³Altum Inc., USA

Deeper Networks

Deep networks have expressive power that **scales exponentially** with depth:

This figure shows networks with random weights of different distributions propagating a circle through the network.

This flexibility makes them harder to train.

Why are deep networks harder to train?

Consider a deep network as a series of width-preserving function:

Assuming depth L, if the magnitude of a perturbation is changed by a factor r in each layer, both signals and gradients **vanish** or **explode** at a rate of r^L.

An Analogy

An Analogy

Recently, analysis (using **Mean Field Theory**) of how signals propagate in deep networks has found interesting properties:

Consider two input examples *a* and *b*. The cosine distance of *a* and *b* approaches a **fixed point** as it moves through the deep network.

Depending on the Jacobian of the network, the cosine of two input vectors (*a* and *b*) will converge to 0 (orthogonal) or 1 (aligned).

Depending on the Jacobian of the network, the cosine of two input vectors (*a* and *b*) will converge to 0 (orthogonal) or 1 (aligned).

If this fixed point is 1 (aligned): Network is **stable** and every input maps to the same output, so the **gradient vanishes** - even very different inputs will be aligned.

If this fixed point is 0 (orthogonal): Network is chaotic and similar inputs map to very different outputs, leading to exploding gradients.

Ideally, we want to initialize our network to be at the *edge of chaos*.

Dynamical Isometry

To find out if a network is stable or chaotic, we can compute:

$$oldsymbol{J}_{
m io}\equivrac{\partialoldsymbol{x}_L}{\partialoldsymbol{x}_0}$$

Here, x_1 is the output of the network, x_0 is the input.

The mean squared singular values (χ) of J determines the growth or decay of the average signal as it moves through the deep network. When χ is approximately 1, the average signal strength is neither enhanced or attenuated.

Dynamical Isometry (strong condition): All singular values of J must be close to 1.

Problem with Initialization

- Not all architectures can satisfy this
 - RELUs
 - Self-attention
- In practice, you could use **costly** normalization instead to "fix" the issue
 - BatchNorm has shown to not work well with sequential data
 - LayerNorm can work, but there are problems
 - They incur computational cost
- What if there is a simpler way?

ReZero

ReZero: **re**sidual with **zero** initialization

$$oldsymbol{x}_{i+1} = oldsymbol{x}_i + lpha_i F[\mathcal{W}_i](oldsymbol{x}_i)$$

$$\uparrow$$
Initialize this learned scalar to zero

- Initializes to **identity map**, trivially satisfies dynamical isometry
- Train as **deep** as you want
- Train much faster

Why would ReZero train faster?

Consider a toy residual network that has a single neuron, single weight and L layers deep:

$$x_L = (1 + \alpha w)^L x_0$$
$$J_{io} = (1 + \alpha w)^L$$

Why would ReZero train faster?

Consider a toy residual network that has a single neuron, single weight and L layers deep:

$$x_L = (1 + \alpha w)^L x_0$$
$$J_{io} = (1 + \alpha w)^L$$

When alpha = 1: The network would be very sensitive the small perturbations of the input. You need a learning rate that is exponentially small in depth.

Why would ReZero train faster?

Consider a toy residual network that has a single neuron, single weight and L layers deep:

$$x_L = (1 + \alpha w)^L x_0$$
$$J_{io} = (1 + \alpha w)^L$$

When alpha = 1: The network would be very sensitive the small perturbations of the input. You need a learning rate that is exponentially small in depth.

When alpha = 0: The input signal is preserved.

```
Why would ReZero train faster?
```


Contour log plots of gradient norm

ReZero for Deep Networks

- (1) Deep Network (Net.)
- (2) Residual Network
- (3) Deep Net. + Norm
- (4) Residual Net. + Pre-Norm
- (5) Residual Net. + Post-Norm
- (6) **ReZero**

 $\begin{aligned} \boldsymbol{x}_{i+1} &= F(\boldsymbol{x}_i) \\ \boldsymbol{x}_{i+1} &= \boldsymbol{x}_i + F(\boldsymbol{x}_i) \\ \boldsymbol{x}_{i+1} &= \operatorname{Norm}(F(\boldsymbol{x}_i)) \\ \boldsymbol{x}_{i+1} &= \boldsymbol{x}_i + F(\operatorname{Norm}(\boldsymbol{x}_i)) \\ \boldsymbol{x}_{i+1} &= \operatorname{Norm}(\boldsymbol{x}_i + F(\boldsymbol{x}_i)) \\ \boldsymbol{x}_{i+1} &= \boldsymbol{x}_i + \alpha_i F(\boldsymbol{x}_i) \end{aligned}$

For deeper networks, or at initialization, log of singular values **are far from 0**.

This leads to **vanishing** or exploding **gradients**.

For **ReZero**, for both deeper networks and at initialization, log of singular values **are close to 0**.

Allows **faster** signal propagation at **large depth**.

Faster Convergence for Fully-connected Networks

Four variants of 32 layer fully-connected networks with width 256 and ReLU activations on CIFAR-10

Faster Convergence for ResNets

Validation error for four variants of ResNet-110 on CIFAR-10

Faster Convergence for Transformers

Three variants of 12 layer Transformers normalization variants against ReZero on enwiki8

Analysis on Alphas

Alphas become big near the deepest layer early in training, then drop back to small values

Conclusion

- A really **simple way** to get much faster convergence in deep networks.
- You can train arbitrary deep networks as you desire.
- Flexible to many architectures, no need for complex initialization schemes.

Future work:

- Explore the meaning behind residual weights.
- Progressively grow your ReZero network.

pip install rezero